

## АО «Лабораторное Оборудование и Приборы»

193230, Санкт-Петербург, ул.Челиева, д.12 Тел. (812) 325-28-36, Факс (812) 325-28-24

E-mail: info@loip.ru http://www.loip.ru

# ПРИБОРЫ ДЛЯ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ТЕКУЧЕСТИ РАСПЛАВА (ПТР) ПОЛИМЕРОВ СЕРИИ МІ2.Х

Производство Göttfert (Германия)



## Зкструзионные пластометры серии mi2.x

Автоматические пластометры серии mi2 позволяют производить определение ПТР термопластов согласно стандартам ISO 1133, ASTM D1238 по процедурам A (ручная), B (автоматическая) и C (с «половинной фильерой), а также ASTM D3364 (для ПВХ) и ГОСТ 11645-73. Приборы оснащены датчиком перемещения поршня и промышленной компьютерной системой с сенсорным экраном.

В конструкции данного семейства приборов заложена полная взаимопреемственность: лаборатория с небольшим бюджетом может приобрести базовую модель mi2.1, а затем, при необходимости, докупая дополнительные устройства, довести уровень автоматизации до mi2.2 или mi2.3.

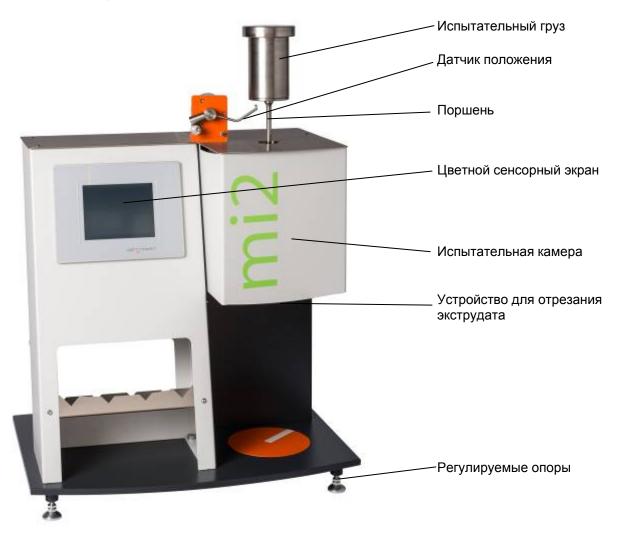
### Модификации:

- mi2.1 прибор в базовой комплектации
- mi2.2 прибор с устройством для автоматического подъема-опускания испытательных грузов
- mi2.3 прибор с устройствами для автоматического выбора и подъема-опускания испытательных грузов

### Принцип работы

Главная отличительная особенность приборов mi2.x — это датчик перемещения поршня, который позволяет определять положение поршня в камере в каждый момент времени. Таким образом, рассчитывается объем экструдированного полимера и объемный показатель текучести (MVR) в см³/10мин. После взвешивания определяется плотность расплава материала и массовый показатель текучести (ПТР) в г/10мин. При дальнейших испытаниях одного и того же сорта полимера, плотность расплава которого уже известна, значение ПТР выдается непосредственно в ходе эксперимента, а взвешивание более не требуется. Результаты испытания отображаются на цветном сенсорном экране с возможностью сохранения на ПК или вывода на принтер.

Устройство для автоматического отрезания экструдата устанавливается опционально и является очень удобным дополнением, когда требуется строго соответствовать тексту ГОСТ 11645-73, работая при этом в автоматическом режиме.


Управление пластометром осуществляется с помощью встроенной компьютерной системы с сенсорным экраном, имеется меню на русском языке.

Для испытаний применяют образцы в виде гранул, порошков, или другой формы. Образцы помещаются в испытательный цилиндр и расплавляются в течение заданного времени, после чего материал продавливается через фильеру за счет давления поршня с установленным грузом. Следует отметить, что отсечка времени плавления и стартовой позиции поршня при начале измерений (50 или 46 мм над фильерой) осуществляется автоматически.

### Особенности приборов серии ті2.х:

- Высокоточный датчик перемещения для измерения положения поршня и объема экструдата.
- Цветной 5.7" сенсорный экран для управления и отображения результатов
- Специальный алгоритм управления температурой, отображение темперадуры с разрешением 0,01°C (в диапазоне до 320°C) и 0,1°C(в диапазоне 320...500°C)
- Высокоточный таймер с разрешением 0,001 с
- Эргономичный компактный корпус
- Установка диапазона испытания от 50 до 0 мм до фильеры
- Возможность сохранение до 500 наборов параметров испытания и до 3000 результатов испытаний для каждого набора
- Удобный механизм быстрой фиксации и освобождения фильеры
- 5 точек калибровки температуры
- USB-порты для копирования данных и вывода на печать
- Последовательный порт для подключения весов
- Порт Ethernet для подключения к компьютеру или к корпоративной сети
- Web-сервер
- Широкий выбор дополнительных и вспомогательных устройств.

## Экструзионный пластометр mi2.1



Базовый прибор mi2.1 состоит из следующих компонентов:

#### Корпус

Эргономичный компактный корпус обеспечивает безопасность и надежность испытаний, удобство в эксплуатации и техобслуживании. Основание прибора располагается на четырех регулируемых опорах для выравнивания прибора.

### Испытательная камера

Нагрев испытательной камеры осуществляется с помощью двух контуров. Доступ к испытательному каналу осуществляется сверху и снизу для удобства очистки.

Температура в тестовой камере управляется специальным алгоритмом. Точки калибровки температуры устанавливаются с помощью сенсорного экрана. Температура отображается на экране в течение всего испытания с разрешением 0.01°C.

#### Механизм быстрого извлечения и запирания фильеры/капилляра

Капилляр удерживается и извлекается с помощью механизма быстрого запирания, что делает процесс очистки испытательного цилиндра простым и удобным.

### Испытательный поршень массой 0,325кг

Вес поршня составляет 0.325кг в соответствии с ISO 1130, ASTM D1238 и ГОСТ 11645-73. На штоке поршня нанесены метки для обозначения измерительных зон согласно стандартам.

#### Цифровой датчик положения

Высокоточный цифровой энкодер для измерения объема экструдата.

### Цветной сенсорный экран

Для ввода параметров, управления процессом испытания и отображения результатов.

#### USB exod

Для подсоединения к компьютеру или флеш-накопителю для резервного копирования данных, а также для подсоединения принтера

#### Ethernet exod

Для подключения к локальной сети и взаимодействия с программой MFRView или сетевым принтером, а также для использования в качестве FTP или Web сервера.

### Последовательный порт

Для подключения весов с возможностью автоматической фиксации массы экструдата

## Экструзионный пластометр mi2.2



Пластометр mi2.2 состоит из базового прибора mi2.1 (см. выше) и устройства для автоматического подъема-опускания испытательных грузов

## Устройство для автоматического подъема-опускания весов

Управление данным устройством осуществляется с помощью меню на сенсорном экране. На платформу устройства можно устанавливать грузы от 1 до 21.6 кг включительно. Для удобства загрузки и очистки испытательного цилиндра платформа с грузами может легко быть повернута вбок с помощью специального поворотного механизма.

При работе с пластометром mi2.2 оператору достаточно установить испытательный груз на платформу, после чего испытания с данным грузом проводятся в автоматическом режиме. В начале эксперимента груз автоматически устанавливается на поршень, а в конце – поднимается вверх, освобождая поршень.

## Экструзионный пластометр mi2.3



Прибор mi2.3 состоит из базового прибора mi2.1 (см. выше) и следующих дополнительных устройств:

### Устройство для выбора весов

Beca 1.2; (1;1.05); 2.16; 3.8; 5; 10; (12.5;15); 21.6 кг всегда находятся в самом приборе и выбираются быстро и без усилий с помощью подвижной рукоятки.

### Устройство для автоматического подъема-опускания весов

Управление осуществляется с помощью меню на сенсорном экране.

Устройство применяется как для установки, так и для снятия выбранного веса. Для удобства очистки испытательного цилиндра установленный груз может легко быть повернут вбок с помощью специального поворотного механизма.

При работе с mi2.3 оператору достаточно загрузить образец в испытательный канал и с помощью рукоятки выбора груза, установить требуемый вес.

Таким образом, пластометр **mi2.3** лучше подходит, когда при испытаниях необходимо применять **различные грузы**.

## Технические характеристики

| 140-11-0-0-11-15-15-15-15-15-15-15-15-15-15-15-15- | Диаметр 9,555-0,01 мм                                                   |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Испытательный канал                                | Длина 168 мм                                                            |  |  |  |
|                                                    | Стандартный (базовая комплектация) 2.095±0.003 мм / 8 ±0.025 мм         |  |  |  |
| Фильера (капилляр)                                 | Половинный (опция) 1.05±0.005 мм / 4±0,025 мм                           |  |  |  |
|                                                    | Изготовлены из карбида вольфрама (опционально – из углеродистой стали)  |  |  |  |
| Поршень                                            | Диаметр 9,48-0,01 мм                                                    |  |  |  |
| Поршень                                            | Длина 220±0,2 мм                                                        |  |  |  |
|                                                    | Базовая комплектация: 0,325кг (поршень)                                 |  |  |  |
| Грузы                                              | Опционально: 1.0; 1.05; 1.2; 2.16; 3.8; 5; 10; 12.5; 15.0 и 21.6 кг,    |  |  |  |
|                                                    | Точность ±0,5%                                                          |  |  |  |
|                                                    | Стандартно: электронная панель управления с цветным сенсорным           |  |  |  |
| Управление                                         | дисплеем VGA 14,48 см (5,7")                                            |  |  |  |
|                                                    | Опционально: с помощью ПО MFRHost, передача данных через LAN            |  |  |  |
| Нагревание                                         | От 5°C выше комнатной температуры до 400°C (до 500°C опция).            |  |  |  |
|                                                    | 16-битный преобразователь температуры, датчик РТ100 (1/3DIN), 2 контура |  |  |  |
|                                                    | нагрева, программный регулятор температуры, точность измерения от 0°C   |  |  |  |
|                                                    | до 320°C: 0,01°C, от 320°C до 500°C: 0,1°C,                             |  |  |  |
| Измерение                                          | Точность цифрового преобразователя перемещения: 0,025 мм/импульс,       |  |  |  |
|                                                    | с 20000 имп./оборот. Измерительная зона МІ: выборочно между 50 и 0 мм   |  |  |  |
|                                                    | перед капилляром. Точность измерения времени: 1 мс, источник импульсов: |  |  |  |
|                                                    | кварц 48 МГц, точность 50 ррт                                           |  |  |  |
| Порты                                              | USB для связи с компьютером и принтером; RS-232; Ethernet               |  |  |  |
|                                                    | Прибора mi2.1: 510x380x625                                              |  |  |  |
| Габаритные размеры<br>(ШхГхВ, мм)                  | Прибора mi2.2: 510x430x1025                                             |  |  |  |
|                                                    | Прибора mi2.3: 510x430x1120                                             |  |  |  |
|                                                    | Прибора mi2.1: ок. 45 кг.                                               |  |  |  |
| Bec                                                | Прибора mi2.2: ок. 75 кг.                                               |  |  |  |
|                                                    | Прибора mi2.3: ок. 105 кг                                               |  |  |  |
|                                                    | Напряжение:220-240B (400°C или 500°C), частота 50-60 Гц.                |  |  |  |
| Электропитание                                     | Потребляемая мощность: ок. 870 Вт / 1 кВт,                              |  |  |  |
|                                                    | мощность режима ожидания 190°C < 130 Вт, 230°C < 140 Вт, 300°C < 220 Вт |  |  |  |

## Комплект поставки приборов серии mi2.x

- прибор mi2.x;
- испытательный поршень D=9.48мм, весом 0,325кг;
- регулируемые опоры;
- уровень для установки прибора в строго горизонтальном положении
- комплект плавких предохранителей 1.6 и 2.5А;
- лопатка для загрузки материала;
- инструмент для очистки фильеры;
- щетка стальная D=9.5 мм для очистки испытательного канала
- поршень D=9.5 с ручкой для очистки испытательного канала
- поршень для уплотнения материала в цилиндре
- пинцет;
- латунная щетка для чистки поршня;
- стандартная фильера для испытаний D=2.095 и L=8мм;
- зеркало для обзора фильеры;
- калибр фильеры;
- упаковка тканого материала для очистки;
- стилус для сенсорного экрана;
- инструкция на русском языке.

## Дополнительные и вспомогательные устройства, опциональные возможности

### Для mi2.1 u mi2.2

Испытательные грузы от 1,000 кг до 21,600 кг (ручная установка)

## Для mi2.2 u mi2.3

Устройство предварительного нагружения

### **Для mi2.3**

Различные наборы грузов

### Для mi2.1

.. Набор для расширения до модели mi2.2 (устройство для автоматического подъема весов) Набор для расширения до модели mi2.3 (устройства для выбора и автоматического подъема весов)

#### Для mi2.2

Набор для расширения до модели mi2.3 (устройство для выбора весов)

#### Для mi2.1, mi2.2 u mi2.3

- Моторизованное устройство для обрезки экструдата
- Устройство фиксации веса до начала испытания (до окончания времени расплавления материала в камере)
- Набор для испытаний по ASTM D 1238, метод С (половинная фильера)
- Устройство для измерения разбухания экструдата на выходе из фильеры
- Заглушка для фильеры
- Моторизованное аккумуляторное устройство для очистки камеры в комплекте с муфтой, зарядным устройством, чистящей разверткой и щетками
- Система продувки азотом для защиты образца от влияния влаги и окисления
- Контрольный термометр с датчиком Pt-100 и наконечником для калибровки по ASTM D 1238
- Специализированный стол
- Принтер и аксессуары
- Программное обеспечение MFRHost
- Весы
- ПК, принтер и аксессуары

## Исполнение испытательной камеры

В базовом варианте применяется камера из высококачественной стали, с оптимальными характеристиками для работы с полиолефинами, ABS-сополимерами, полиакрилами и т.п. Однако для испытаний галогенсодержащих материалов и некоторых других химически агрессивных и/или абразивных пластиков требуется применять испытательную камеру из специальных марок стали.

В таблице ниже указаны характеристики различных марок стали и сплавов для испытательных цилиндров.

По умолчанию испытательные камеры изготавливаются из стали марки 5.

### Сравнительная таблица марок стали

| Марка стали  | Твердость | Стойкость к<br>истиранию | Кислотостойкость | Температурный<br>диапазон /<br>материал                |
|--------------|-----------|--------------------------|------------------|--------------------------------------------------------|
| 1            | •         | •                        | •••••            | До 500°C /<br>ETFE, PVDF                               |
| 2            | ••        | ••                       | ••••             | До 500°C<br>PVDF                                       |
| 3            | •••       | •••                      | ••••             | До 500°C<br>PVDF(до 250°C)<br>PVC, PLA,<br>биополимеры |
| 4            | ••••      | ••••                     | •••              | До 500°C<br>РЕЕК                                       |
| 5 (стандарт) | ••••      | •••                      | ••               | До 500°С                                               |

<sup>• -</sup> минимальное значение параметра

••••• - максимальное значение параметра

## Метрологическая информация

Приборы для определения ПТР аттестуются как испытательное оборудование в соответствии с ГОСТ Р 8.568-97. В комплект поставки входит Методика аттестации, утвержденная ФГУП "ВНИИМ им. Д.И.Менделеева".

Д.И.Менделеева". По заказу может быть выполнена первичная аттестация пластометра с выдачей Аттестата и Протокола аттестации

Производитель имеет право модифицировать стандартный комплект поставки при модификации прибора и аксессуаров без уведомления потребителя.